大部分从事调查研究的朋友,都会碰到“多大样本量”才用代表性问题,其实这个问题不光研究人员会困惑,企业也非常困惑。那到底应该如何选择样本量呢?其实 今天沈老师不是要回答这个问题,而是帮助你:如何解释这样一个样本量是恰当或合适的,既满足统计要求,也能考虑费用和可操作性!
这么严肃的话题,还是轻松些吧
- 样本量的确定是费用与精度的函数,取决于研究的精度和费用,特别是实践中费用考虑的更多!
- 抽样调查,特别是随机抽样,样本有代表性,往往比普查更有效率,甚至精度更高,这里我们主要计算和讨论抽样误差,非抽样误差是人为因素,考质量控制;
- 样本量的确定有赖于随机抽样,或者说主要是针对随机抽样,需要统计推断下的计算样本量,如果是非概率抽样,理论上没有计算和控制样本量的问题;
- 如果研究只要40-50个样本,感觉上应该是非概率抽样(依赖被访者选择方式)
- 即使是非概率抽样,我们很多时候也采用概率和统计分析及推断思想来进行数据分析和下结论!只是这种方法没有完善的理论支持,或者说有可能因为研究者的主观判断失误造成偏差;
- 无论是概率抽样还是非概率抽样,样本量越大当然效果越好,结论越稳定(理论上说)
- 40-50个样本在统计上属于小样本,t-检验,如果样本大于60或理想120以上,t分布就是正态分布了,所以40个样本在统计上是最小推断总体的样本,换句话说40-50个样本是介于小样本和正态分布大样本的临界样本量;如果不严格的话40个样本就可以比较总体之间的统计差异了;
- 所以,一般来讲,针对一个研究对象和人群,要进行比较最少40个样本,比如男女差异,应该各拥有40人(80人),或者说你们进行配额样本的时候要保证统计比较的类别至少有40个样本;
- 那么40个样本有代表性吗? 当然越多越好,越有代表性
- 但如果调查对象非常一致,没有差异,只要问一个人就行了,所以要考虑研究对象的差异性,如果差异大,当然样本量要大,如果没有差异,同质性较高样本量就少;
- 总体的大小对样本量的选择没有影响,调查研究一般必须在研究前明确总体是谁,大总体没有影响(上万人),中等总体有点影响(5000人),小总体有很大影响(千百个人);总体是你要推断的人群;
- 再者要考虑研究对象在总体中拥有的比例(比如要找艾滋病人),如果比例非常低的话,需要大样本才能找到;但往往商业研究就采用非概率抽样了,比如滚雪球抽样,专家判断抽样,配额抽样等;
- 另外,选择40个人,如果是经过我们主观判断的,有一种说法:叫条件概率,也就是我们越了解研究目的和对象,我们就越能够做出正确判断;比如P(A|B),也就是说我们越了解B事件发生的概率,那么A发生的概率就越确定;就像我们在Google中搜东西,你的关键词=B越准确,得到的结果A就越是你想要的东西;
- 当然,如果你的主观判断错了,就会犯更大的错误
- 还有就是希望得到的精度;如果得到的结果是70%加减10%误差我们可以接受,但如果是总体本身就不到8%,那8%加减10%,尾巴比头都大显然不行,当然到底如何确定精度,是研究前你们与客户要明确的,事先研究设计确定的,不能事后来说;
- 记住:有时候我们研究本身不需要那么高的精度
- 整个研究设计过程的质量控制可以更有效提升研究品质
- 研究测试的技术(接近自然科学仪器测量)可获得更好研究品质
- 根据精确的抽样,需要采用精确的统计分析,否则也达不到效果
- 任何研究都不会完美,都是权衡和保守的过程,总的来讲保守不犯错
- 如果研究有实验设计和研究设计,所以实验设计,包括所谓双盲实验、正交设计、拉丁方格等,确定样本分组是非常精细的,有助于研究品质;但设计缺陷会造成降低品质;
- 处置组和对照组的设计,主要应用在传播效果、广告效果研究上,需要有设计原则
- 实验设计也强调对其它影响因素的控制,也就是X对Y的影响,要控制住Z的干扰,更能提高研究品质
- 被访者的参与度(你的激励方式)也重要,一分钱一分货;我们是花钱买信息
- 任何理由都是可解释的,但这里主要是要用术语,越专业越说行话,别人更相信,所以解释样本量的科学性,有时候要用科学,也就是理论;
- 因为有理论,显得有水平,因为有水平就有话语权,就有执行力!所以权威部门的设计或出面,客户就相信了!
- 研究过程,不断修正,比如追加样本也是解决问题的办法
- 连续性研究,也会解决或减少对样本量的需求
- 广告效果研究经常采用rolling data的方式,因为广告效果有延迟效应,每周50个样本,4周一个分析,就是200样本,第五周分析前4周,第六周分析2-5周数据,进行比较和检验,这是常有方法;